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ABSTRACT

Learning control algoritims have been proposed
for error compensation in cepetitive crobotic
manipulator tasks. It is shown that the pecformance
of such control algoritims can be seriocusly degraded
wvhen the feedback data they use is relatively specse
in time, such as might be provided by vision
systems. It is also showm that lesrning control
algoritims can be modified to compensate for the
effects of sparse data and thereby yield performance
which approaches that of systems without limitations
on the sensory informstion available for control.

INTRODUCTION
Robotic manipulators typically have highly
nonlinear dynamics and are often subject to

substantial dynamic disturbances due to such factors
as uwwodelled dynamics, variable joint frictions,
and unknown paylosds. These factors can result in
unacceptable ecrrors in manipulator motions. To
teduce these, a mumber of advanced control
algorithms have been proposed (1.2). Unfortunately
such algorithms can require extensive calculations,
and do not exploit a very {mportant aspect of
commercial manipulators: namely that most robot
tasks are repetitive.

Recently, a class of control algorithms, called
learning control, has been developed which utilizes
this repetitive natucre to compensate for these ecror
sources. These algoritims requicte less calculations
than many other advanced control algorithms.
Leacrning control algoritims also do not depend on
accurate detailed dynamic models of the manipulator
wvhich may be hard to obtain.

learning control algorithes were originally
proposed by Uchiyama in 1978 (3). A mmsber of
algorithms of this type have been developed since.
Although different names ace used, like “learning
control® and “repetitive control®, the algorithms
tend to be similar. Leacrning control slgocithms
have been presented in the contimuous time domain
{4) and in the discrete time domain {S) and have
been shown to pecform well both analytically and
experimentally (6,7).

In the studies of learning control algorithems to
date, it has been assumed that the errors used by
the algorithms can be measured continuously along
the manipulator’s path. However, in many potential
arplications, such as those using vision, the error
signal can be measured only at relatively fev points

along the path. This condition is referred to here
as a sparse data case, and {t is shown that the
sparseness of the data will degrade the performance
of the learning controller. Although the work
presented in this paper used Togai’s learning
controller (5) as its basis, the sparse data control
techniques developed here can be applied to other
learning controllecs as well.

In this paper, three methods are presented which
are shown to reduce the errors introduced by the
sparseness of data available to learning contcol
algoritims. They were each tested by simulation for
tvo systea.

THE SYSTEMS

A one degree of freedom (DOF) single link device
(tepresenting a lineac system), and a three degree
of freedom SCARA-type manipulator (representing @
nonlinear system) were used (Figure 1). A cowplete
description of these systems and their dynamic
equations of motion are contained in ceference (8).

To design the learning controller, the nonlinear
dynamic equations for the SCARA were lineacrized.
Conventional preportional-decivative (PD)
controllers were designed as the "local controllers”
(shown in Fiqure 2) used in conjunction with the
learning control algorithms. The PD-controller’s
parameters were selected to approximate a second
otder system response with natural frequency of 18
tadians per second and a damping tatio of 0.9 in the
case of the single link system. The SCARA‘s local
controller was design to approximate a8 third order
system with similar transient characteristics (8).
It should be noted that the feedback to the local
controller is continucus.

$

‘Figure 1. SCAPA Type Three DOF tenlinear Manipulator
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riqure 2. Learning Control Block Diagram.
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THE BASIC LEARNING CONTROL ALGORITHM

Basically, a leacrning controller leatns the
behavior of a system from the errors generated
during a given cycle of the system. It uses them in
the next cycle to add a correctional (leacning)
signal to the command so that the tracking error
decreases. The learning signal at a specific point
on the manipulator peth during any cycle is a
cumulative function of the errors at that same point’
during all the previous cycles. Hence, the learning
signal can be thought of as a series of integrators,
one for each point on the path.

rigure 3 shows the besic learning algorithm used
in this study, see ceference (5). It can be
described as follows:
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figure 3. Response With Learning Conttol.

The results obtained in this study show that a
prepercly designed learning control algorithm without
limitations on its data, non-sparse learniny,
performed well for both the linear single link
system and the nonlinear SCARA. However, as the
sparseness of the feedback data increases, the
pecformance of the learning controller deqgrades.
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Figute 4 shows the first four cycles of the
single link system with learning control. The
command consists of a series of ramps and dwells.
Here the learning controller used a relatively large
mber (40) of measurements per cycle (MPC). This
is close to the non-sparse case. Since the learning
control algorithm does not affect the system's
tespense during the first cycle, this cycle’s
response shows the system behavior without leacning.
In Figure 4, this ficrst cycle’s response deviates
quite substantially from the command. The learning
controller clearly forces the sgystem response to
converge to the command as the system repeats its
motion; it learns successfully.
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figqure &. Single Link Non-Sparse Learning.

The system’s response vwith sparse learning
conttol (8 MPC) is shown In Figurte S. Here the
system’s response does not converge in later cycles
to its desited profile. This figqure shows the
important degrading effect that sparseness of the
meagsured signal can have on the system’s
performance. The degradation of the system’s
pecformance as 8 function of the mmber of MPC is
show in Figure 6. Here the NS value of the error,
taken over each cycle, (is plotted for vacrious
measurerent rates. Clearly, as the mmber of
measurements decreases, the error ternds not to
converge toward zero.

The cocrrelation between performance and the
muber of measurements used by the learning
algorithm for the nonlinear SCARA robot parallels
the single link cesults. Figqure 7 shows the SCARA
tip position error capidly decrease over severtal
cycles for 40 MPC. For this case the manipulator is
cormanded to move ts end effector back and forth
between the points (0.20, 0.25, 0) and (0.372,
0.750, 0.1) along a straight line (see figure 2).
The cormanded distance along the path is a harmonic
function of time with a frequency of 2.5 Hz. There
is a 0.05 second dwell at the end of each move.
When the measurements becomes more sparse, the
errors increase, see Figure §.

The objective of this study was to develop
methods to {mprove the performance of learning
controllers under sparse data conditions. Some of
the techniques considered are discussed below.
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Figure 5. Sparse Learning.
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LEARNING CONTROL ALGORITHMS FOR SPARSE DAIA

A Data Shift Algorithm

One method for improving the performance of the
learning controller, given a limited amount feedback
data which can be obtained in one cycle, i{s to shift
the location of the measurement points slightly in
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each cycle. The ercor can be measured at many path
roints during a period of several (n) cycles. The
algorithm does not act upon these measurements until
atter the end of the n-th cycle. This improves
convergence, but it will be n times slower.
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Figure 8. SCARA RIS Tip Errocr for Sparse learning.

The technique’s effectiveness as applied to the
single 1link system, is shown in Figure 9. Here the
link wag driven by a 2.5 Hz sinusoidal command. The
error was weasured in five cycle groups and at a
tate of 4 nMPC. During this time, the measurement
location within a cycle is shifted as described
sbove. Every five cycles the infocmation is used to
correct the system response. The improved perform-
ance {s quite dramatic, as shown in Figqure 9. The
final error s essentially zero. The results
presented in Figure 6 indicate, that for 4 MPC, the
basic learning controller without data shift would
give a cather large residusl error. These cesults
show how this technique {mproves the steady state
error, but greatly increases the mmber of cycles
tequired to achieve the correction. This can be a
problem in some cases.
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Figure 9. Single link Sparse Learning with Data
Shift Learning (Velocity).

forwvatrd Estimation Learning

A second method studied to decrease the apparent
sparseness cf the feedback data without sacrificing
the speed of cnvergence, was to use a system model
and state i{nformaticn from actual measurements to
estimate the error at points where no measurements
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are made. Using the state of a pre..ous point
measured or estimsted) and 3 lineatrized
mode!, expressed in standard state space
form, it is possible to integrate forward in time
and estimate the error at ».point further along the

path, by the equation:

system

x,(kel) = Ax (k) o By (k)

where, indicates estimated values. The
estimation error {(where “~" indicates “ecror®) is
given by:

- kel) - x,.(ked
:_xj(lul) gj( +1) -j( )

- A(k)x’(t) + l(k)vj(k) + Mk)xj(k) - !j(k)

The first two terms Mk)x,(k) and l(luvj(k) are due
to modeling errors. third term is’ due to the
estimation ecror at the previous sampling point,
The final term represents the unmodelled
disturbances. These equations were used to obtain
measures of the anticipated accuracy of the lesining
controller with estimetion.

In the analysis of the learning algoritim it
was assumed that the value of ¥, does not change
much from one cycle to the next:’i.e. w j 1(t)-- v,(l)

(e.g., frictions at similar points are almost same).
Purthermore all the state variables acte assumed to
be available at the ssasurement points.

The forward estisstion technique wocked well to
isprove the pecformance of the learning control
algorithm with spacse data for the single link
system., Figqure 10 shows a large error for this
system at 4 WPC (for a sinusoidal input). It also
shows the good perforsance that can be achieved at
20 MPC. Nearly identical pecformance is obtained
wvhen only 4 points per cycle are sessured and 16
points per cycle are estimeted with no sodelling
errors. Cleacly the leatning control algoritim with
estimation, where the estimstor has exact knowledge
of the system’s paraswters, is every bit as good as
the system wvhich uses an equivalent number of
measured points. The figure also shows the
performance of the estimating algoritim when the
valuves for the effective link i{nertia used by the
estimator were substantially in erroc (by 11 V).
The results for this case show that the algoritim
continued to pecform well, because the linear form
of model still matched the linear equations of the
actual system. However the algoritim did not

perform as well wvhen it was applied to the nonlinear
SCARA tobot.

Simulations for the SCARA showed a significant
decrease in {ts performance wvhen forwvard estimation
was added. In these cases the estimator used a
simple linear model and was clearly not beneficial.
An estimator with a nonlinear model was not
considered, because it would not be consistent with
the traditional learning control approach not to
rely on complex nonlinear models. If one ig willing
to use such models it can be argued that more direct
computed torque control wmethods (9) should be
applied rather than learning control.
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Figure 10. Single Link Estimation Learning.

forvard & Backward Estimation Leatning

A third method uses both forward and backward
estimation and s less sensitive to modelling
errors. Backward estimation ls possible because the
leamning controller does not use the informetion
that it gathers during & cycle, until the next
cycle, rfigurte 11 shows how two measutements ace
used to obtain an estimate at a point in betv!en
The focward estimation algoritim uses both x tk)
X (ke2) to estimate the value of ,(k~t’
5estlnted values og’: (kel) ate then ’averaged.

The estinttm is qiven by:

(k.1|-|ij(u: ‘evj(k) A ‘x,(k»z) -A l!vj(kol)l r
Under certain conditions backwacrds integration
can lead to mumecical instabilities, and techniques
have been develcped that consider these problems
(10}, Since the estimation errors caused by
modelling errors and disturbances tend to cancel
with each other on average, the estimation ecror is
smaller than that of the previcus estimation method.

b3

-}

$
2 estimated velve
~
forward estimation l.(hn
z &) l.(ioﬂ
'
megsured velve messyred valve
\b.ctm-vd estimaton

Figure 11. Single Link Forwvard/Backward Estimation
Leatning.
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The aprlication of this spproach to the single
link, with modelling errors of 11%, is shown in
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Figurte 12. It shows the performance for the case

~ithout estimation (10 mpPC), the case with only
forward estimation (10 mPC, and 10 estimeted
points), and the case with 10 MPC, and 10 estimated

points using the forwerd and bachward averaging
estimation technique. The forward estimation method
reduces the important final FRMS error to
approximately one half of those without estimation.
The forwvard and backwards technique further reduces
the error by more than half to less than 20 percent
of the non-estimation steady state error. These
tesults indicate that the linear model based
forward-backwacd estimation technique wotks very
well for the linear single link system with errors.
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figure 12. Single Link Forwerd/Backwerd Estimstion
Learning, with Modelling Errors.

However, as discussed earlier, the forward
estimation algorittm did not perform well when it
was agplied to the nonlinear SCARA robot, in fact it
increased the steady state RMS error. Flguce 13
shows that the forward-bachkward estimation learning
does significantly better (for the SCARA. In this
figure, the pecfomance for 20 MPC learning without
estimation is shown, along with forwvard and
forwvard-backward estimation learning. The two
estimation cases used 20 MPC and 20 estimated points

per cycle. As before, the forward estimation case
was worse than the case without estimation.
However, the (forward-backward estimstion technique

reduces the important steady state error by more
than SO percent. Results such as these suggest that
the forward-basckward estimation technique does tend
to cancel the ecrrors introduced by the use of a
simple linear model to predict the performance of
this nonlineacr system.

CONCLUSIONS
It has been shown that {n cases vhere the
manipulator’s errors can be measured only at

relatively few points along its path, such as in
systems using vision,
learning control algorithm that was studied,

the performance of the

seriocusly deqraded. In this study three methods
wete presented which were shown to substantially
teduce the ecrors  introduced by the spacseness of
data available to learning control algorithms. The
presented results suggest that these techniques csn
effectively reduce the errors of learning control
algorithwms introduced by data mesurement
limitations. The wvork also showed that the
nonlinear characteristics of manipulators can, in
certain cases, decrease the effectiveness of these

techniques and that future research in this area is
necessary.
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Figute 13. SCARA Forward Backwvard Estimation
Learning, with Modelling Errors.
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